Enzymatic Treatment as a Pre-Step to Remove Cellulose Films from Sensors

نویسندگان

  • Deusanilde J. Silva
  • Orlando J. Rojas
  • Martin A. Hubbe
  • Song W. Park
چکیده

In this work an enzymatic treatment is proposed as a preparative, cleaning protocol to remove cellulose films from resonators and sensors. Quartz crystal and surface plasmon gold sensors, coated with ultrathin films of cellulose are used in studies of molecular (for example, polymer and surfactant) adsorption. The sensors are usually recycled after removal of the film, with limited success, after one of two treatments, either hot acid or ammoniac solutions. In the proposed, improved protocol a mixture of cellulases from Aspergillus species, are used as a pre-treatment to facilitate the release of the cellulose film from the surfaces of the sensors. Two concentrations of NaCl solutions were considered in the enzymatic treatment, 1 and 10mM, at given enzyme solution concentration, temperature and pH. It was found that after 80min, the water contact angle after treatment with both salt concentration conditions reached a plateau. The average water contact angle after integration of the enzymatic and ammoniac treatments was found to be low enough, between 6.4 and 7.1 deg to allow reuse the sensors. It is concluded that the use of the ammoniac cleaning solution after the enzymatic treatment is a very convenient, safe and less time consuming way to remove the cellulose films from the sensors to be recycled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.

Various cellulose nanofibrils (CNFs) created by refining and microfluidization, in combination with enzymatic or 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized pretreatment were compared. The morphological properties, degree of polymerization, and crystallinity for the obtained nanofibrils, as well as physical and mechanical properties of the corresponding films were evaluated. Compared ...

متن کامل

Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption.

The effect of lignin as an inhibitory biopolymer for the enzymatic hydrolysis of lignocellulosic biomass was studied; specially addressing the role of lignin in non-productive enzyme adsorption. Botanical origin and biomass pre-treatment give rise to differences in lignin structure and the effect of these differences on enzyme binding and inhibition were elucidated. Lignin was isolated from ste...

متن کامل

Enzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol

Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed.  The hydrolysis process involves two stages: in the first stage, the O...

متن کامل

Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles

Objective(s): Biodegradable film is widely used because it is free from synthetic substances and does not lead to environment pollution. This study aimed to prepare and characterize biodegradable sago starch films loaded with Carboxymethyl Cellulose nanoparticles. Methods: Sago starch films were prepared and plasticized with sorbitol/ glycerol by t...

متن کامل

Optically tunable chiral nematic mesoporous cellulose films.

Demand for sustainable functional materials has never been larger. The introduction of functionality into pure cellulose might be one step forward in this field as it is one of the most abundant natural biopolymers. In this paper, we demonstrate a straightforward and scalable way to produce iridescent, mesoporous cellulose membranes with tunable colors and porosity. Concomitant assembly of cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011